GL.1 / Introduction 2012-2013

1. Introduction
1.1 Définition du GL

Le Génie Logiciel (Software Engineering) est un domaine des sciences de I'ingénieur dont la finalité
est la conception, la fabrication et la maintenance de systémes logiciels complexes, sirs et de
qgualité. C'est un ensemble de méthodes, techniques et outils pour la production et la maintenance
de composants logiciels de qualité.

Contrairement au développement artisanal (production individuelle d'un systéme simple), dans le
cas du GL, il s'agit d'une production collective d'un systeme complexe concrétisée par un
ensemble de documents de conception, de programmes et de jeux de tests avec souvent de
multiples versions (multi-person construction of multi-version software).

1.2 Problématique

Compte tenu des évolutions des techniques de programmation, du matériel et des besoins,
plusieurs problémes ont confronté le développement de logiciels dont les plus importants sont :

= Taille et complexité des systemes logiciels de plus en plus accrues :
- Besoins et fonctionnalités qui augmentent et évoluent sans arrét
- Evolution du matériel
- Diversification des architectures
= Délais de réalisation courts
= Développement collectif (différents intervenants au développement avec des compétences
multiples).

Les difficultés liées a la nature du logiciel

= un logiciel ne s'use pas, sa fiabilité ne dépend que de sa conception
= mais, pour rester utilisé, un logiciel doit évoluer

= pas de direction clairement exprimée

= changements fréquents

e contradictions des besoins, etc.

Les difficultés liées aux personnes

* ne savent pas toujours ce qu'elles veulent, ou ne savent pas bien I'exprimer
e communication difficile entre personnes de métiers différents

Les difficultés technologiques

e courte durée de vie du matériel
e beaucoup de méthodes et de langages
e évolution des outils de développement, etc.

GL.1 / Introduction 2012-2013

1.3 Objectifs du GL — La régle du CQFD

Le GL se préoccupe des procédés de fabrication de logiciels de facon a s'assurer que les quatre

critéres suivants soient satisfaits :

& Le systeme développé doit assurer les fonctionnalités attendues ;

& Les colts du développement doivent rester dans les limites prévues au départ ;

& Les délais doivent rester dans les limites prévues au départ ;

& La qualité du logiciel correspond au contrat de service initial. C'est une notion multiforme qui

recouvre :

Fiabilité : capacité d'un logiciel a assurer de maniere continue le service attendu,

Correction (validité) : aptitude d'un logiciel a réaliser exactement les taches telles qu'elles
ont été définies par sa spécification,

Robustesse : aptitude d'un logiciel a fonctionner méme dans des conditions anormales,
Extensibilité : facilité d'adaptation d'un logiciel aux changements de spécification,
Réutilisabilité : aptitude d'un logiciel a étre réutilisé en tout ou partie,

Compatibilité : aptitude des logiciels a étre combinés les uns aux autres,

Efficacité : capacité d'un logiciel a bien utiliser le minimum des ressources matérielles
(mémoire, puissance de I'U.C., etc.),

Portabilité : facilité a étre porté sur différents environnements matériels et/ou logiciels,
Tracabilité : capacité a identifier et/ou suivre un élément du cahier des charges lié a un
composant logiciel,

Vérifiabilité : aptitude d'un logiciel a étre testé (optimisation de la préparation et de la
vérification des jeux d'essai)

Intégrité : aptitude d'un logiciel a protéger ses composants contre des acces ou des
modifications non autorisés,

Autres qualités : facilité d'utilisation, réparabilité, etc.

Ces qualités sont parfois contradictoires (chic et pas cher!). Il faut les pondérer selon le type du

logiciel (critique/grand public, systemes sur mesure/produits logiciels de grande diffusion, etc.).

1.4 Obijectifs de la premiére partie du cours

Couvrir le domaine de la production de logiciels

mettre en évidence les besoins
aspects organisationnels

0 cycles de vie

0 démarches
aspects techniques

0 méthodes

0 spécification

0 design patterns

0 qualité, test.

GL.2 / Cycles de Vie de Logiciels 2012-2013

2. Cycles de vie de logiciels
2.1 Introduction

Le cycle de vie du logiciel (ou processus de développement) est un ensemble cohérent d’activités
pour spécifier, concevoir, implémenter et tester des systemes logiciels. Il y a alors différents
livrables (modeles d’analyse, codes sources, manuels d’utilisation, etc.) associés chaque activité.

2.1.1 Activités

a. - Etude de faisabilité : déterminer si le développement proposé est réalisable.
- Analyse du marché : déterminer s’il y a un marché potentiel pour ce produit.

b. - Expression des besoins : déterminer quelles sont les fonctionnalités que le logiciel doit offrir.
- Recueil des besoins : obtenir les besoins a partir des utilisateurs.

- Analyse du domaine : déterminer quelles sont les taches et les structures qui sont communes
a ce probleme.

C. - Planification du projet : déterminer comment développer le logiciel.
- Analyse des codts : déterminer les estimations du co(t.

- Assurance qualité : déterminer les activités qui permettront d’assurer la qualité du produit
pour garantir la satisfaction du client (selon les objectifs contractuels).

- Structure work-breakdown : déterminer les sous-taches nécessaires pour développer le
produit.

d. - Conception : déterminer comment le logiciel doit fournir la fonctionnalité.
- Conception architecturale : concevoir la structure du systéme.
- Conception d’interfaces : spécifier les interfaces entres les différentes parties du systeme.
- Conception détaillée : concevoir les algorithmes pour les parties individuelles.

e. -Implémentation : construire le logiciel.

f. - Test : exécuter le logiciel avec des données pour permettre de s’assurer que le logiciel opére
correctement.

- Test unitaire : tester par le développeur original.
- Test d’intégration : tester durant I'intégration du logiciel.
- Test du systéme : tester le logiciel dans un environnement.

- Test d’acceptation : tester pour satisfaire le client.
3

GL.2 / Cycles de Vie de Logiciels 2012-2013

g. - Livraison : fournir au client une solution logicielle efficace.
- Installation : mettre le logiciel disponible dans le site opérationnel du client.
- Formation : former les utilisateurs a utiliser le logiciel et répondre a leurs questions.

h. - Maintenance : mettre-a-jour et améliorer le logiciel pour garantir une utilisation efficace
continue.

2.1.2 Documents

Les résultats des différentes activités sont représentés par plusieurs types de documents, dont les
plus importants sont :

- Spécification des besoins logiciels : décrit ce que doit faire le logiciel.
- Modéle d’objet : montre les principaux objets / classes.

- scénarios de cas d’utilisation : montrent les séquences des comportements possibles du point de
vue utilisateur.

- Plan du projet : décrit I'ordre des taches et estime les besoins en matiere temps et efforts.

- Plan de test du logiciel . décrit comment le logiciel serait testé pour garantir un comportement
correct.

- Conception du logiciel : décrit |la structure du logiciel

- Plan assurance qualité du logiciel : décrit les activités a effectuer pour assurer la qualité.

- Manuel d’utilisation : décrit comment utiliser le logiciel final.

- Code source : le code du produit final.

- Rapport du test : décrit quels sont les tests effectués et quel était le comportement du systeme.
2.2 Modeéles de cycles de vie

Un modele d’un processus de développement est une représentation abstraite d’'un processus. Il
présente la description du processus d’une perspective particuliere. Nous avons quatre principaux
modeles de cycles de vie de logiciel :

2.2.1 Modéle séquentiel linéaire

Appelé aussi le modele en cascade (Waterfall model) du fait que le diagramme ressemble a des
séries de cascades. C'est un modele adapté seulement quand tous les besoins sont bien
déterminés a priori.

GL.2 / Cycles de Vie de Logiciels

2012-2013

Etude de
Faisabilité '*'
Expression
Besoins

Conception

[

Implémentation

Figure 1. Modele en cascade.

Test

Le modele d’origine a été décrit initialement par Royce (1970), mais actuellement il y a plusieurs

versions qui peuvent mettre |’accent sur certaines activités et négliger d’autres selon le besoins.

Dans la version présentée par la figure 1, les activités de planification du projet sont inclues dans la

phase expression des besoins. D’autre part, les phases livraison et maintenance ont été négligées

dans cette version du modele.

L'une des variantes les plus importantes de ce modeéle et qui a été méme considérée comme étant

un modeéle a part entiére est le modéle en V (figure 2).

Chronologie

Orientation,
faisabilite

\

+ Préparation dela ..

> |

Maintenance

validation A
Anal}fse des Tests d'acceptation
besoins — analyse -
cahier des | dusysteme -
charges / systeme
\ vérification
Conception n| Tests d'intégration
architecturale
sp ec_.tﬁcauons N . Togicial
architecturales vérification
Conception Tests unitaires
détaillée
specifications
détaillées \ module
Codage abstraction

2.2.2 Modeéle de prototypage

Figure 2. Modele en V.

Ce modeéle de cycles de vie construit un prototype pour tester les concepts et les besoins. Apres

accord du client, le développement du logiciel se poursuit en passant toujours par les mémes

phases du modeéle précédent.

GL.2 / Cycles de Vie de Logiciels 2012-2013

2.2.3 Modele incrémental

Proposé par D. L. Parnas (1979) pour concevoir et livrer au client un sous-ensemble opérationnel
du systeme global. Le processus continue d’itérer, comme le montre la figure 3, a travers le cycle
de vie global avec des incréments additionnels.

Définir les besoins Assigner les besoins aux Concevoir I'architecture

incréments du systeme

v

Développer incrément

A

Valider incrément Intégrer incrément Valider systeme

—>

= Systeme final

Systéme incomplet

Figure 3. Modele incrémental.
2.2.4 Modeéle en spirale

C’est un modele qui a été introduit par B. Boehm (1988). L'image du modele est une spirale qui

commence au milieu et qui réitére continuellement les taches de base (figure 4).

A

Détermination des

//

objectifs. des
alternatives, des

Analyse des

Identification et
résolution des

contraintes : risgues
risques
l série de prototyphs
[
Lo
Plan du) concept] besoins i
cycle de vie Conception
détaillée
Plan du -
; validation
développement conceptiony
codification

Plan des tests
et de
'intégration

H—

Planification des
phases suivantes

Spirales supplém

Validation et
vérification
Tests

. . unitaires
Intégration

Acceptation

entaires

eventuellement (1ncréments)

Figure 4. Modele en spirale.

Développement, et
vérification/validation

GL.2 / Cycles de Vie de Logiciels 2012-2013

Les principaux risques et leurs remédes, tels que définis par Boehm, sont les suivants :

- Défaillance de personnel : embauches de haut niveau, formation mutuelle, leaders,
adéquation profil/fonction, ...

- Calendrier et budgets irréalistes : estimation détaillée, développement incrémental,
réutilisation, élagage des besoins, ...

- Développement de fonctions inappropriées : revues d’utilisateurs, manuel d’utilisation
précoce, ...

- Développement d’interfaces utilisateurs inappropriées : maquettage, analyse des taches, ...

- Produit "plaqué or" : analyse des colits/bénéfices, conception tenant compte des colts, ...

- Volatilité des besoins : développement incrémental de la partie la plus stable d’abord,
masquage d’information, ...

- Problemes de performances : simulations, modélisations, essais et mesures, maquettage,

- Exigences démesurées par rapport a la technologie : analyses techniques de faisabilité,
magquettage, ...

- Taches ou composants externes défaillants : audit des sous-traitants, contrats, revues,
analyse de compatibilité, essais et mesures, ...

2.2.5 Autres modeéles

Il'y a plusieurs autres modeles ou variantes de modeles déja existants tels que le modele de
développement des systemes formels, développement basé réutilisation, programmation
extréme, etc.

GL.3 / Méthodes d’analyse et de conception 2012-2013

3 Méthodes d'analyse et de conception
3.1 Introduction

Les méthodes d'analyse et de conception fournissent des notations standards et des démarches
pratiques pour aboutir a des conceptions appropriées.

3.2 Classification des méthodes
Il existe différentes manieres pour classer ces méthodes, dont :

la distinction composition / décomposition : les méthodes peuvent étre ascendantes et
consistent a construire un logiciel par composition de modules existants ou, descendantes
et décomposent récursivement un systéme jusqu'a arriver a des modules simples ;

la distinction fonctionnel / objet. Dans un raisonnement fonctionnel, le systéeme est
considéré comme un ensemble d'unités fonctionnelles en interaction. Les fonctions
disposent d'un état local, mais le systeme a un état centralisé partageable par I'ensemble
des unités fonctionnelles. Par contre, un raisonnement objet considére qu'un systeme est
un ensemble d'objets en interaction. Chaque objet dispose d'un ensemble d'attributs
décrivant son état et I'état du systeme est décrit (de facon décentralisé) par I'état de
I'ensemble des objets constituant ce systéme.

3.2.1 Méthodes fonctionnelles (années 60)

Basées sur une décomposition fonctionnelle du systeme (inspirée de Iarchitecture des
ordinateurs), les méthodes fonctionnelles trouvent leur origine dans les langages procéduraux.
Elles mettent en évidence les fonctions a assurer et proposent une approche hiérarchique
descendante et modulaire. Ces méthodes utilisent les raffinements successifs dont le plus haut
niveau représente I'ensemble du probleme. Chaque niveau est ensuite décomposé en respectant
les entrées/sorties du niveau supérieur. La décomposition se poursuit jusqu'a arriver a des
composants simples et maitrisables.

En plus des problemes rencontrés avec les langages procéduraux, ce style de raisonnement
dissimule également une sérieuse limite touchant directement la stabilité de I'architecture du
systeme. En fait, cette derniere est basée principalement sur des fonctionnalités qui peuvent étre
sujet de modifications ou d'évolutions.

Parmi ces méthodes, nous pouvons citer SA (Structured Analysis), SART (Structured Analysis for
Real Time systems), SADT (Structured Analysis and Design technique), etc.

3.2.2 Méthodes systémiques (années 70)

Une variante des méthodes fonctionnelles qui sépare complétement les données des traitements.
Une étape de validation du systeme de données par celui des traitements est alors nécessaire. Ce
type de méthodes est tres bien adapté pour les systemes d'information d'entreprise.

GL.3 / Méthodes d’analyse et de conception 2012-2013

Exemple : MERISE (Méthode d'Etude et de Réalisation Informatique des Systéemes d'Entreprises),
etc.

3.2.3 Méthodes Objet (années 80)

L'approche objet propose une méthode de décomposition (décomposer pour réunir) basée sur
I'intégration de ce que le systeme est (structure) et fait (fonction). Le systéme est constitué d'un
ensemble d'objets en interaction (par échange de messages) pour réaliser les fonctionnalités
attendues. L'architecture du systeme est alors basée sur la partie statique qui est plus stable.

Le principe de l'orientation objet étant basé sur l'identification et I'organisation des concepts du
domaine d'application, plutét que leur représentation terminale dans un langage de
programmation qu'il soit orienté objet ou non. Ce processus est un style de raisonnement et non
pas une technique de programmation, entre autres, il est indépendant des langages de
programmation jusqu'aux derniers stades. Il se concentre sur la modélisation et non pas sur
I'implantation des concepts, ce qui permet de bien comprendre et organiser les concepts
inhérents a I'application avant de chercher une implantation efficace des structures de données et
des algorithmes. Aussi, en plus de préparer la programmation, la modélisation peut servir de
support pour la documentation et l'interface avec le client.

Les principaux avantages des ces méthodes peuvent étre :
v’ stabilité de la modélisation par rapport aux entités du monde réel,
construction itérative facilitée par le couplage faible entre composants,

v
v’ possibilités de réutiliser des éléments d’un développement a un autre,
v

Cependant, les méthodes objet restent encore récentes et trouvent toujours des difficultés dans le
développement de systémes critiques, temps réel, ou encore embarqués qui nécessitent des
méthodes rigoureuses permettant d'accomplir une vérification formelle.

Exemple : OMT (Object Modeling Technique), Booch'93 (le nom de son auteur), OOD (Object
Oriented Design), OOSE (Object Oriented Software Engineering), etc.

3.3 Spécification

Tout produit complexe a construire doit d'abord étre spécifié ; par exemple un pont de 30 métres
de long, supportant au moins 1000 tonnes, construit en béton, etc. ces spécifications peuvent étre
considérées comme un contrat entre le client (la collectivité qui veut réaliser le pont) et le
producteur (I'entreprise de génie civil).

En informatique, le client et le producteur peuvent étre différents selon les phases du cycle de vie
du logiciel :

GL.3 / Méthodes d’analyse et de conception 2012-2013

= Spécification des besoins ou spécification des exigences (requirements specification) : c'est
un contrat entre les futurs utilisateurs et les concepteurs. Elle concerne les caractéristiques
attendues (exigences fonctionnelles et non fonctionnelles : efficacité, slreté, portabilité,
taille, etc.). Elle intervient en phase d'analyse des besoins et se rédige en langue naturelle.

= Spécification du systéme : c'est un contrat entre les futurs utilisateurs et les concepteurs et
concerne la nature des fonctions offertes, les comportements souhaités, les données
nécessaires, etc. Elle intervient pendant la phase d'analyse du systéeme.

= Spécification de I'architecture du systéme : c'est un contrat entre les concepteurs et les
réalisateurs et définit I'architecture en modules de I'application a réaliser. Elle intervient
pendant la phase de conception générale.

= Spécification technique (d'un module, d'un programme, d'une structure de données, etc.) :
c'est un contrat entre le programmeur qui l'implémente et les programmeurs qui
I'utilisent. Elle intervient pendant /a phase de conception détaillée.

De maniére générale, une spécification décrit les caractéristiques attendues (le quoi) d'une
implémentation (le comment).

& || est souhaitable qu'une spécification soit claire, non ambigué et compréhensible,

& Les spécifications du langage naturel manquent souvent de précision,

& Les spécifications doivent aussi étre cohérentes et complétes. Ici, la complétude peut
prendre deux formes :

- Interne : tous les concepts utilisés sont completement spécifiés,

- Externes : complétude de la spécification par rapport a la réalité décrite. C'est une
forme quelque peu illusoire en pratique ; on ne peut pas en général spécifier tous
les détails qui entourent le systeme.

3.3.1 Classification des styles de spécification
Il'y deux criteres de classification orthogonaux :

= Formalité : on distingue les spécifications informelles (langage naturel), semi-formelles
(sémantique plus ou moins précise — souvent graphique), et formelles (syntaxe et
sémantique définies formellement par des outils mathématiques).

= Caractére opérationnel ou déclaratif : les spécifications opérationnelles décrivent /e
comportement désiré par un modele ce qui permet d'une certaine maniere de le simuler;
par opposition, les spécifications déclaratives décrivent seulement les propriétés désirées.

3.3.2 Techniques de spécification

Les techniques de spécification utilisées dans les méthodes d’analyse et de conception peuvent
étre :

- Les spécifications en langage naturel,
- Les spécifications techniques avec des langages spécialisés

10

GL.3 / Méthodes d’analyse et de conception 2012-2013

- Les machines d'états finis

- Les réseaux de Petri

- Les schémas entité-association

- Les spécifications formelles et logiques temporelles

Souvent, les techniques de spécification se complétent pour décrire différentes vues d'un méme
systeme. Les méthodes tentent de proposer des assemblages efficaces de telles techniques avec
des guides pour les construire et les valider. Le langage de modélisation UML constitue une bonne
combinaison des différentes techniques de spécifications objets couvrant la totalité des aspects
fonctionnel, statique, dynamique et architectural d'une application logicielle.

3.4 Langage de modélisation unifié (UML)

UML est un langage de modélisation objet qui permet de spécifier, construire, visualiser et décrire
les artéfacts d'un systeme logiciel. Le langage représente |'état de l'art des langages de
modélisations objets et possede une notation graphique riche et expressive.

UML permet la modélisation de la structure et du comportement du systeme indépendamment de
toute méthode ou de tout langage de programmation.

- Spécifier & Documenter : modélisation précise, non ambigué et complete
¢ Syntaxe et sémantique bien définies des éléments de modélisation UML.
e Support complet pour les étapes analyse, architecture/conception, implémentation,
et test.
- Construire : mapping UML- OOPL (langage de programmation orientés objet).
- Visualiser : notation graphique riche et expressive.

Le langage de modélisation unifié ou UML est une notation graphique standard semi formelle qui
regroupe les meilleures pratiques de I'objet et est adopté par I'OMG (Object Management Group).

3.4.1 Historique

Au début des années 90, il a été constaté que les méthodes objet (environ une cinquantaine)
étaient liées uniquement par un accord sur les concepts de base de |'objet (attribut, objet, classe,
héritage, ...). Cependant, chacune des ces méthodes possédait sa propre notation et aucune
méthode ne pouvait prétendre couvrir tous les besoins ni modéliser correctement les différentes
vues de l'application.
En 1995, des efforts d'unification des méthodes objet, pratiques industrielles et notations ont
conduit a la proposition de la méthode unifiée (Unified Method). Cette tentative a échoué pour les
deux principales raisons :

e Dissemblance des styles de conception des développeurs,

* Diversité des classes de systemes a développer (ordinaire/critique, ...).

11

GL.3 / Méthodes d’analyse et de conception 2012-2013

En fait, les méthodes objet se partagent les concepts objets et non pas les démarches. Les efforts
ont été orientés depuis vers l'unification des notations manipulées par les méthodes ; UML a ainsi
vu le jour.

L'historique en quelques points.

e Apparition des langages OO (mi 60 et fin 80)
e Entre 89 et 94, le nombre de méthodes OO a augmenté de 10 a 50.
e En 1995 tentative d'unification des méthodes objet, pratiques industrielles et notations :
— Unified Method v0.8 draft 95,
— Efforts réorientés vers l'unification des notations.
e UML (Unified Modeling Language) proposé en 1996,
* Normalisation OMG.
— UML V0.9 en Juin 96,
— UML 1.1 adopté par I'OMG en novembre 97,
— UML1.3en99,
— UML 1.4 (UML 1.4.2 standard ISO/IEC 19501),
— UML 2.0 2003,
— UML 2.1.2 novembre 2007,
— Version actuelle: UML 2.4.1; les travaux d'amélioration continuent toujours
http://www.uml.org/

* Principaux auteurs :

Ivar Jacobson (OOSE),
Grady Booch (BOOCH'93),
James Rumbaugh (OMT), et
— Autres partenaires...

e Role de I'OMG (Object Management Group) http://www.omg.org/
— Standardisation des technologies Objet (UML, CORBA, etc.),
— Révisions basées sur les contributions de la communauté des concepteurs UML.

3.4.2 Organisation du langage.

UML n'impose pas un processus de développement particulier, mais il est préférable (selon ses
auteurs) de prévoir un processus de développement centré sur l'architecture, guidé pas les cas
d'utilisation, itératif et incrémental (principales caractéristiques du Processus Unifié). La figure 3.1
présente |'organisation en vues des neuf principaux diagrammes UML (UML 1.4).

12

GL.3 / Méthodes d’analyse et de conception | 2012-2013

Vue logique Vue d'implémentation
diagramme de classes, d'objets
diagramme de séquence, diagramme de composants

diagramme de collaborations.

Vue utilisateur
diagramme de cas
d'utilisation

Vue Processus Vue de déploiement

Machines d'états diagramme de déploiement
diagramme d'activités

Fig. 3.1 organisation d'UML.
3.5 Diagrammes UML

A partir de la version 2.0, UML a défini quatre nouveaux diagrammes et une nouvelle structuration
de sa collection de treize diagrammes : structure, comportement et interaction.

Structural Diagrams Behavioral Diagrams Interaction Diagrams
Class Use case Sequence

Object State Machine Communication
Package Activity Interaction Overview
Composite Structure Timing

Component

Deployment

13

GL.3 / Méthodes d’analyse et de conception 2012-2013

3.5.1 Diagrammes de Structure

Cette partie définit les constructions statiques et structurelles (classes, composants, noeuds, etc.)
et leurs utilisations dans les différents diagrammes structurels, tels que le diagramme de classes,
le diagramme de composants, et le diagramme de déploiement.

3.5.1.1 Diagramme de Classes

Un diagramme de classe exprime de maniére générale la structure statique du systéme en termes
de classes et de relations entre classes. Un diagramme de classes regroupe généralement les
éléments de modélisation suivants : Association, Aggregation, Class, Composition, Dependency,
Generalization, Interface, InterfaceRealization, Realization.

3.5.1.2 Diagramme d’Objets

C'est une instance d'un diagramme de classe (comprenant des objets et des valeurs réelles) qui
donne une image instantanée de |'état détaillé du systeme. Un diagramme d'objets contient
principalement des objets (instances de classes) et des liens (instances d'associations).

3.5.1.3 Diagrammes de Packages

Un package est utilisé pour grouper des éléments (et méme d'autres packages) et fournir ainsi un
namespace pour ce groupe d'éléments.

Types
Integer

Time

Un package peut importer soit une partie ou la totalité des membres des autres packages. En plus,
une relation ‘'merge’ peut étre également définie entre packages.

Auxiliary B
R~~_ «access»
h_‘h“h M
— Jﬂ,ShopplngCart S —
Types - «imports «“mport> -1 WebShop

Fig. 3.2 diagramme de packages.

Les éléments de modélisation typiquement utilisés dans un diagramme de package sont :

Dependency, Package, PackageExtension, et Packagelmport.
14

GL.3 / Méthodes d’analyse et de conception 2012-2013

3.5.1.4 Diagramme de Structure Composite

Un diagramme de structure composite montre la structure interne d'un classificateur, ainsi que
I'utilisation d'une collaboration dans un ‘collaboration use'. Le terme "structure" désigne ici une
composition d'éléments interconnectés, représentant des instances run-time en collaboration a
travers des liens de communications pour accomplir certains objectifs communs.

Structures internes. Des structures d'éléments interconnectés qui sont créés dans une instance du
classificateur container. Une structure de ce type représente une décomposition de ce
classificateur.

Ports. Dont l'objectif est d'isoler un classificateur de son environnement en offrant un point
permettant d'accomplir les interactions entre ses éléments internes du classificateur et son
environnement. Ce découplage entre les éléments internes du classificateur et son environnement
permet une définition indépendante et méme réutilisable du classificateur.

powertrain Engine

=

J

power

Collaborations. Les Collaborations permettent une description exclusive des aspects pertinents
d'une coopération d'un ensemble d'instances par l'identification des réles spécifiques joués par
chacune de ces instances.

15

GL.3 / Méthodes d’analyse et de conception

2012-2013
e BrokeredSale s Y
D T il s 2
// 2) \\
. ~
” AT T ¥y
// - i &
J / wholesale: ™ *
’ s e Sale ™~ R
/ broker | — ¥4 ~ N
buyer T ™~ \
/ \ y ~ seller %
! ™~)
|| seller |
. \ producer I
‘ ;
\ !
\\ \ f‘l
] el A
Y ~ h
. ’ retail: N v
3 . s
S \ Sale A B /’
\.\\ \.._h_____ —— g Vi e
\\-\._ — T —— e -
- —| consumer s

Fig. 3.3 collaboration.

Classes structurées. C'est un moyen permettant la représentation des classes qui peuvent avoir
des ports en plus d'une structure interne.

powertrain Engine Car
G
2]
> i axle p
i - rear : Wheel [2] e : Engine
£
power
<<interface>>
powertrain
Boat
. shat P _
<<interface>> : Propeller e: Engine
power

Fig. 3.4 classes structurées.

3.5.1.5 Diagramme de Composants

Les diagrammes de composants montrent la structure des composants, les classificateurs qui les
spécifient (classes d'implémentation par exemple) et les artéfacts qui les implémentent (code
source, binaire, exécutables, etc.). Ces diagrammes contiennent généralement des composants

(descriptions d'implémentation) qui peuvent étre composites, et des dépendances (utilisations de
services des composants).

16

GL.3 / Méthodes d’analyse et de conception 2012-2013

OrderEntry | «componenty
) :Order

Orderableltem

y
(&)

Orderableltem

«components
:Product

Fig. 3.5 diagramme de composants.

Les composants représentent en général des implémentations de classes, implantent des services
et/ou requiérent des services offerts par d'autres composants. Le type du composant peut étre
spécifié par un stéréotype (document, exécutable, table, etc.).

3.5.1.6 Diagrammes de Déploiement

Les diagrammes de déploiement refletent la structure des noeuds sur lesquels les composants sont
déployés et les moyens de communication entre ces noeuds. lls existent sous deux formes :
spécification et instance. En général, un nceud représente une ressource matérielle qui possede
ses propres attributs (capacité mémoire, vitesse d'horloge, ...). La nature de ces ressources peut
étre précisée par un stéréotype (environnement d'exécution, dispositif, etc.).

adevices
JAppServer

N L} 3
*W

W2EEServer
QOrderSchema.ddl
Order jar

ShoppingCart.jar

ItemSchema.ddl

Account.jar
Product.jar

BackOrder jar
Serwice.jar

Fig. 3.6 diagramme de déploiement.

17

GL.3 / Méthodes d’analyse et de conception 2012-2013

Dans I'exemple que montre la figure 2.8, les composants déployés sont exprimés textuellement
(Order.jar, OrderSchema.dll, ...).

3.5.2 Diagrammes du Comportement
3.5.2.1 Diagramme de Cas d'utilisation

Les cas d'utilisation décrivent les fonctionnalités d'un systeme ou d'un classificateur (sous-systeme
ou classe) du point de vue de l'utilisateur (ou des éléments externes) en interaction avec le
systeme ou le classificateur.

Un cas d'utilisation décrit le comportement du systeme du point de vue d'un utilisateur en
précisant les limites du systeme et ses relations avec I'environnement.

Un acteur représente un réle joué par une personne ou un systéme externe qui interagit avec le
systeme étudié ; la méme personne physique (ou systéme externe) peut jouer différents roles
(donc différents acteurs).

Un diagramme de cas d'utilisation traduit la relation entre les cas d'utilisation dans le systeme et
leurs acteurs. Des descriptions détaillées des différents scénarios possibles du méme cas peuvent
étre réalisées a I'aide des diagrammes d’interaction.

Relations entre cas d'utilisation :

Généralisation. Le cas d'utilisation fils est une spécialisation du cas pére.
Inclusion. Une instance du cas source comprend le comportement décrit par le cas cible.

Extension. Le cas source ajoute son comportement au cas destination; I'extension est soumise a la
vérification d'une condition (point d'extension).

Dans l'exemple :

/fr—\\
érification Signature /1

~<zaenid=> e

Client

.
Retrait CCP ﬁ
s

o
o o
-

Einglude=>

-

- N

Authentification

Retrait Distant

Ol e :
K 7< Goestion des comptes

Gestionnaire ——

Fig 3.7 un diagramme de cas d'utilisation.

18

GL.3 / Méthodes d’analyse et de conception 2012-2013

* Le comportement "Retrait Distant" est une spécialisation du comportement "RetraitCCP".

* Le comportement "RetraitCCP" inclut toujours celui de "Authentification".

* Le comportement "Vérification Signature" étend le comportement "RetraitCCP" ; le point
d'extension étant "MontantRetrait = 20.000DA".

3.5.2.2 Machines d'états (Statecharts)

Les machines d'états (dérivées des statecharts 1987) décrivent le comportement des instances
d'un élément modele (objet ou interaction par exemple). Elles représentent les séquences
possibles des états et des actions par lesquels les instances de I'élément peuvent passer en
réaction aux événements recus (signal, invocations d'opération, etc.). Une machine d'état est
attachée d'habitude a chaque classe active dans le diagramme de classes. Le comportement global
du systeme est défini par I'ensemble des machines d'états des objets actifs constituants ce
systéeme.

Evénement. Un stimulus pouvant générer des réactions dans le systeme. Il peut avoir différentes
formes : appel, signal, changement ou temporel.

Etat. C'est une étape dans I'évolution du systeme pendant laquelle, il exécute une action ou
attend un événement. Le systeme doit également satisfaire une condition appelée invariant tant
gu'il se trouve dans cet état. Les états peuvent étre simples, composites séquentiels ou composites
concurrents.

Transition. Passage éventuel d'un état a un autre (qui peut étre le méme). Les transitions sont
instantanées et le temps ne peut s'écouler que si le systeme est dans un état propre. Chaque
transition est caractérisée par un état source, un état destination, un événement déclencheur
(trigger), une garde (condition) et une liste d'actions a exécuter lors du franchissement de la
transition :

condition de garde : L s i
action evenement emis

événement recu * *

E1 Evt1 [cond] f m{) *Ewvt2 E2

W transition

Sémantique opérationnelle. Aprés occurrence de I'événement déclencheur, si la garde de la
transition est évaluée a vrai, la transition est dite alors franchissable. Elle est exécutée (tirée ou
traversée) s'il existe une configuration atteignable (sans violation d'invariant) et si la transition ne
présente aucun conflit avec le reste des transitions franchissables. Deux transitions exécutables
présentent un conflit si elles appartiennent a une méme hiérarchie d'états. UML donne priorité a
la transition du plus bas niveau et les autres transitions conflictuelles seront alors abandonnées.

Le principe de base d’exécution d’une machine d’états est qu’elle traite un seul événement a la
fois et finit de traiter toutes ses conséquences avant d’en traiter un autre (run-to-completion). Les
19

GL.3 / Méthodes d’analyse et de conception 2012-2013

actions sont instantanées et les événements ne sont jamais simultanés. Si un nouvel événement
(deferrable) est reconnu pendant |'exécution d'une étape run-to-completion, |'occurrence de
I’événement est placée dans un pool d’événement (aucune structure de données n'est imposée).
Aprés achévement d'une étape RTC, le systeme traite tous les événements dans le pool un par un
(aucune politique de sélection n'est imposée) de la méme maniére et exécute ses transitions et
passe a une autre configuration stable.

. J VerifyCard \

acceptCard

QutOfService ReadAmount :
- - ReadAmountSM aborted
outOfService
[VerifyTransaction HreleaseCard ReleaseCara

Fig. 3.8 un exemple d'une machine d'états.

ATM

3.5.2.3 Diagrammes d'activité

C'est une variante des machines d'états dans laquelle les états représentent |'exécution des
actions (ou sous-activités) et les transitions sont déclenchées par accomplissement des actions
(ou sous-activités). lls sont proposés pour la représentation du comportement des opérations
d'une classe ou la formalisation d'un processus d'une organisation.

5

=

=

5 Receive Fill Ship

% | Chilas Order Cirder =
9 [order

o) accepted]

Sead
Invoice

Accept
Payment

aattributes performinaDept: Department

Acectg Departiment

TInvomce

N Make Payment

Customer

weaternal »

Fig. 3.9 diagramme d'activités.

20

GL.3 / Méthodes d’analyse et de conception 2012-2013

3.5.3 Diagrammes d'interaction
Les diagrammes d'interaction possedent différentes variantes :

- diagramme de Séquence qui focalise sur I'échange de messages entre un nombre de lignes
de vie (lifelines),

- diagramme de Communication montrant les interactions d'un point de vue architectural,

- diagramme 'Interaction Overview' qui est une variante du diagramme d'activités
définissant les interactions de facon a encourager la représentation des flots de controle,

- diagramme 'Timing' est utilisé pour la représentation des interactions lorsque |'objectif
principal est de raisonner sur le temps.

3.5.3.1 Diagramme de séquence

Les diagrammes de séquence montrent des interactions entre objets selon un point de vue
temporel. Dans ce contexte, il est utile de noter que UML propose un large éventail de
mécanismes de communication inter objets (appels d'opérations, signaux, invitations, exceptions,
envois synchrone et asynchrone, etc.).

Name of Interaction
sd UserAccepted

| ————— [ocal Attribute
+PIN:Integer {readonly 0<=PIN <=9999} <} Local Attribut

1 | lifeline

‘User :ACSystem

|

l Code(PIN)

| -

! ” Message

| i

l CardOut _—

| —

L s

= __f"" 1

i oK -

= Unlock

| L

|

|

|

Fig. 3.10 notation du diagramme de séquence.
3.5.3.2 Diagrammes de communication (collaboration)

Ces diagrammes insistent sur les interactions entre lignes de vie du point de vue architecture de la
structure interne les échanges de messages correspondants. L'ordonnancement des messages est
réalisé a l'aide d'un schéma de numérotation de séquence.

Un diagramme de collaboration, montre l'interaction organisée autour des réles et leurs relations.
Le temps n'est pas montré comme dimension séparée et les séquences de communication et
threads concurrentes doivent étre déterminées par l'utilisation de nombres de séquence. Une
collaboration est utilisée pour décrire la réalisation d'une opération ou d'un classificateur ce qui

21

GL.3 / Méthodes d’analyse et de conception 2012-2013

simplifie l'identification des design patterns présents (un pattern est une collaboration
paramétrique dont chaque utilisation, les classificateurs réels vont remplacer les paramétres de

définition du pattern).
Lifeline
sd M J [yl
1a:mi / Message
2

with
Sequence
number

Messages

Y 2:m2

1b.1.1:m3,
1b.1.1.1:m2
\\
A\

\
s[u]B

Fig. 3.11 notation du diagramme de communication.

3.5.3.3 'Interaction Overview Diagrams'

Ces diagrammes définissent les interactions par le biais d'une variante des diagrammes d'activités
de maniere a décrire le flot de contréle. Les lignes de vie et les messages n'apparaissent pas au
niveau overview.

22

GL.3 / Méthodes d’analyse et de conception 2012-2013

sd OvenviewDiagram lifelines :User, (ACSystem
/

Interactionls=s
o e
ref - n]
N DEstabllshAccess(lllegal PIN")
Nuration Constraint _ (0. .15}
e ——
sd I
g = T o
(inline) Intsraction
E Cardout !
i |
decision
e —

\ -~ >
interaction constraint \ \Y
. TIx[pin ok]

sd

{
- J

Msg("Pleasz Enter’)

|
|

/;\. e/ OpenDoor {1__}}

Fig. 3.12 notation 'Interaction Overview'
3.5.3.4 'Timing Diagrams'

L'objectif principal de ces diagrammes est la représentation des contraintes de temps sur les
interactions. lls décrivent le comportement avec les temps d'occurrence des événements qui
provoquent des changements dans les conditions ou états modélisés des lignes de vie.

23

GL.3 / Méthodes d’analyse et de conception

| 2012-2013

Lifeline

State or condition

DurationConstraint

time constraint

/

—
Q
1]

=

Idle

WaitCard TR

CardOQut

OK {t..t+3}

/ e il
sdU erAcc_M /
| {d.3%d)
|
/ Waitf\éss

event or stimulus

R fick mark values

Fig. 3.13 notation 1 'Timing Diagram'

t \
timing ruler

Ces diagrammes peuvent étre également utilisés pour montrer les changements d'états d'un objet
en réponse a des événements ou stimuli d'une perspective temporelle.

Lifeline

State or condition

DurationConstraint

\ sd UserAcc_UserJ

N

s

)([d..3%} "
P T
:User Idle>< WaitCard

WaitAccess [dle
b A A

Fig. 3.14 Notation 2 'Timing Diagram'

Finalement, il est possible d'avoir une forme plus élaborée de ces diagrammes dans laquelle
plusieurs lignes de vie et messages seront représentés.

24

GL.3 / Méthodes d’analyse et de conception 2012-2013

3.5.4 Extensibilité UML & notion de Profils

UML fournit un ensemble riche et soigneusement choisi de notations et concepts de
modélisation. Cependant, certains projets peuvent parfois exiger des mécanismes de
représentation additionnels autres que ceux prédéfinis. Pour répondre a ce besoin, UML permet
par l'intermédiaire de ses mécanismes d'extension I'ajout de nouveaux éléments de modélisation
ou de formes libres d'information. C'est un moyen pour raffiner la sémantique standard d'UML et
permettre ainsi I'ajout de nouveaux éléments de modélisation qui seront utilisés dans la création
de modeles UML spécifiques. Une restriction fondamentale sur toutes les extensions définies est
gu'elles doivent étre strictement additives a la sémantique standard.

Les éléments d'un modéle UML sont personnalisés et étendus avec de nouvelles sémantiques en
utilisant des stéréotypes, des contraintes et des valeurs marquées. Un ensemble cohérent de telles
extensions définies pour un objectif spécifique constitue un profil UML.

Contraintes. Des expressions écrites dans un langage de définition de contraintes donné pour
permettre la spécification linguistique de nouvelles sémantiques d'un élément modele (des
restrictions sémantiques que I'élément doit obéir). Le langage peut étre spécifique (OCL par
exemple), un langage de programmation, des notations mathématiques ou le langage naturel.

Stéréotypes. Fournissent un moyen de classification d'éléments de modélisation (classes,
associations, etc.) pour qu'ils se comportent sous certaines considérations comme étant des
instances de nouvelles constructions virtuelles du méta modele. C'est un élément modeéle qui
définit des valeurs (basées sur valeurs marquées) et contraintes additionnelles et facultativement
une nouvelle représentation graphique. Tout élément marqué par un stéréotype particulier regoit
alors ces valeurs et contraintes en plus des attributs, associations et super classes que I'élément
possede.

Valeurs marquées (Tagged value). Permettent d'attacher l'information a n'importe quel élément
modele en conformité avec la définition de marque. Cette derniére (Tag definition) spécifie les
valeurs marquées qui peuvent étre attachées a un genre d'éléments modeéles.

Définition de stéréotype :

«metaclass» < zstereotypes
Class Clock

resolution: Integer

Utilisation du stéréotype :

aclocks
StopWatch

25

2012-2013

GL.3 / Méthodes d’analyse et de conception

Utilisation du stéréotype avec présentation de valeurs :

«clock»] otk
_____ «CIOGHe
StopWatch resolution = 2

extensionClock

Class Clock
baseClass
resolution = 2

name="Stop'Watch"

Application de plusieurs stéréotypes sur le méme élément de modélisation

«creator, clock» g&ﬁm s E
StopWatch |- —_——
acreator
author ="Ahmed"
date = "02-04-15"

Profils. Les profils UML présentent un mécanisme permettant de spécialiser le langage pour un
contexte particulier (analyse, conception technique, codage, etc.) par l'introduction de notions
plus adaptées au contexte de travail actuel, de régles de modélisation spécifiques, et de modes de

présentation des modeles adaptés.
Un profil est un package stéréotypé qui contient des éléments de modélisation personnalisés pour
un objectif ou un domaine spécifique en étendant le méta modele par des stéréotypes, des

définitions de marques, et des contraintes.

Types

«enumeration»
Color Javainteger

red
green
blue

«import»

aprofiles
Manufacturer ;

«metaclass» ¢ «stereotype»
Device
- wapply»

Factory

Class

author. String i
color- Color T) «devicen
T v [Tt~ «device»
volume=10

volume: Javaintager

channel: Javalnleger

Fig. 3.15 définition et utilisation de profil.

26

GL.3 / Méthodes d’analyse et de conception 2012-2013

Pour traiter la complexité de certains domaines particuliers, La politique de I'OMG repose sur le
lancement de plusieurs RFPs (Requests For Proposal) spécifiques et d'évaluer par la suite les
propositions. De cette maniere, divers profils ont été définis ou améliorés par I'OMG tels que le
SPT et MARTE (profils du temps réel), EDOC, CORBA, EJB, etc.

3.5.5 Langage de définition de contraintes (OCL)

Les diagrammes UML ne sont pas typiquement assez raffinés pour fournir tous les aspects
pertinents d'une spécification. Il y a également le besoin de décrire des contraintes additionnelles
sur les objets du modele. D'un autre coté, les contraintes exprimées en langage naturel conduisent
souvent a des ambiguités.

OCL (Object Constraint Language) est un langage formel simple développé pour répondre a ce
besoin. C'est un pur langage de spécification ; il ne peut pas donc changer quoi que ce soit dans le
modele ou son exécution. La version actuelle (janvier 2009) adoptée par I'OMG est OCL 2.0.

OCL peut étre utilisé dans différentes situations :

e spécification d'invariants sur les classes et les types dans un modéle de classes,

e spécification des invariants de type pour les stéréotypes,

e description des pré et post-conditions sur les opérations et les méthodes,

e description des gardes,

* spécification des destinations des messages et actions,

e spécification de contraintes sur les opérations,

e spécification des regles de dérivation d'attributs pour toute expression sur un modele
UML.

Un exemple de contrainte OCL attachée a I'attribut numberOfEmployees d'une classe Company :

context Company inv:

self.numberOfEmployees > 50

Des contraintes de pré et post-condition d'une opération peuvent étre exprimées de la maniere
suivante :

context Typename::operationName(param1 : Typel, ...): ReturnType
pre parameterOk: param1 > ...

post resultOk : result = ...

27

GL .4/ Concepts Objet 2012-2013

4 Concepts objet
4.1 L'objet

Un objet définit une représentation d’une entité atomique réelle ou virtuelle, dans le but de le
piloter ou de le simuler. Il encapsule une partie des connaissances du monde dans lequel il évolue.
Un objet associe données et traitements en ne laissant visible que l'interface de I'objet (les
traitements que I'on peut faire dessus).

Objet = Identité + Etat + Comportement

- Lidentité : permet de distinguer I'objet de maniére non ambigué indépendamment de son
Etat (non explicitée);

- L’état : défini par les valeurs instantanées de tous les attributs d’un objet. Il évolue au
cours du temps;

Wolture

contenu_sesevalr: 50

T
|
1

29res Un parcour de 1Dﬂkm'7

Maiture

coatenu_resenvoir: 40

- Le comportement : regroupe toutes les compétences (services) d’'un objet et décrit les
actions et les réactions de cet objet. Chague comportement élémentaire d'un objet est
appelé opération et est déclenché suite a une stimulation externe (message envoyé par un
autre objet).

Les objets d’un systéeme informatique travaillent en collaboration pour réaliser les fonctions de
I'application. Le comportement global de I'application repose sur la communication entre les
objets. Cette communication est réalisée par envoi et réception de messages.

4.2 Démarche d'abstraction

L'abstraction consiste a concentrer la réflexion sur un élément d'une représentation en négligeant
tous les autres.

La démarche d'abstraction procéde de l'identification des caractéristigues communes a un
ensemble d'éléments, puis de la description condensée de ces caractéristiques dans ce qui est
appelé classe. La démarche se définit par rapport a un point de vue (critéres pertinents dans le
domaine considéré).

28

GL .4/ Concepts Objet 2012-2013

4.3 Classe

Une classe décrit le domaine de définition d'un ensemble d'objets; les objets d'une classe sont
construits par instanciation.

Motocyclette

couleur : TypeZloulzur ==gnumeratich==
cylindrée : Intagar TypeCouleur
vitessemax ; Integer

- verte
demarrer?) rouce
accelérer) blanche
freinerd)
newQperationd

4.4 Attributs et Opérations

e les attributs correspondent aux propriétés de la classe. En phase d'analyse, il est
recommandé de ne pas confondre entre objet et attribut :

"Si I'on ne peut demander a un élément que sa valeur, il s'agit d'un simple attribut; si plusieurs
questions s'y appliquent, il s'agit plutét d'un objet qui posséde lui méme plusieurs attributs
ainsi que des liens avec d'autres objets"

* les opérations décrivent la spécification du comportement des objets de la classe (une
méthode est une implémentation d'une opération ou service). Elles sont identifiées apres
étude des différents scénarios décrivant les fonctionnalités du systeme. Cing types
d'opérations sont distingués :

- Constructeurs,

- Destructeurs,

- Sélecteur (opération de consultation qui renvoie I'état de I'objet),

- Modificateurs, et

- Itérateurs (qui visitent I'état d'un objet ou une structure de donnée qui contient plusieurs
objets.

4.5 Communication entre objets

La communication entre objets est réalisée par envoi et réception de messages. Un message
regroupe les flots de controle et les flots de données et peut prendre différentes formes : appel de
méthode, événement discret, interruption, etc.

29

GL .4/ Concepts Objet 2012-2013

[evvol] ™)

[
“ Howion ’

1oatternr() =~

:TourdeContréle [au sol]

——

Awion

4.5 Relations entre classes
Les relations entre classes peuvent prendre différentes formes :

1. Association : abstraction des liens qui existent entre objets (connexion sémantique
bidirectionnelle).

Chi étLdie dans 1= o

Enseign "' Etud

!
!

1
[

Décoration : étudie dans Association j
Réles : Etud, Enseign

Multiplicités : 1, 0..1, M..N, * ou 0..*, 1..*

2. Agrégation : permet d'exprimer des relations de type maitre / esclave (ensemble-élément,
tout-partie, composé-composant, etc.).

Comité |* | Professaur

memere

3. Composition : forme d'agrégation avec couplage plus important. Les composants ne sont pas
partageables et |la destruction de I'agrégat entraine la destruction des composants agrégés.

= zomposee de

compos3ante

[

Féce 1
- :
comansitz

30

GL .4/ Concepts Objet

4. Hiérarchie de classes : c'est une classification des objets au sein d'une arborescence de classes
permettant ainsi de gérer la complexité par réutilisation des caractéristiques héritées. C'est une

relation non réflexive et non symétrique.

L'héritage peut prendre I'une des deux formes (selon le sens de la lecture ou le besoin d'analyse) ;

généralisation ou spécialisation.

Yehicule

Spécialisation

N I]
Tarrestre hérien
Généralisation - [
— 1 1
Camion Yiaiture Avion Hélicoptére

e La généralisation est employée une fois que les éléments du domaine ont été identifiés.
Elle consiste alors a factoriser les informations communes entre classes.

e La spécialisation permet de capturer les particularités (d'un ensemble d'objets) non
couvertes par les classes déja identifiées. Les nouvelles caractéristiques sont représentées
par une nouvelle classe, sous classe d'une des classes déja existantes.

* La définition des sous classes doit répondre a un critere de classification pertinent et non
pas sur des valeurs particuliéres des attributs d'une méme classe.

e La généralisation introduit un couplage statique tres fort et non mutable. Donc, elle n'est

pas adaptée pour représenter les métamorphoses.

5. Héritage multiple :

Statlon

Aniral

Blpede

Quadrupéde

HEI’DI\"DFE‘-‘

Carnivore

4.6 Délégation

La délégation est basée sur l'agrégation et consiste a une propagation manuelle des propriétés.
Une représentation équivalente de I'héritage multiple de la figure précédente peut étre réalisée

par délégation.

Statiar

Z‘_\ [’;\

Cheval

]

Anirmal

31

Régime

GL .4/ Concepts Objet 2012-2013

4.7 Polymorphisme

Le polymorphisme implique qu'un nom d'objet peut désigner des instances de classes différentes
issues d'une méme arborescence; le polymorphisme d'opérations offre la possibilité de déclencher
des opérations différentes en réponse a un méme message (désignation donnée au niveau de la
super classe).

Employé

calculer_payed)

[ﬁ

Permanent | Contractuel
SalairedeBase _ | calculer_paye calculer_paved | |nbreHeures*Tari
+Prime+Indemnité +Prime -IRG
-IRG-RetenusSs -Retenuss

32

GL.5 / Vérification de logiciels 2012-2013

5.1 Introduction

Malgré le développement des nouvelles technologies de l'information, des défaillances et des
erreurs sérieuses découlent toujours des différentes phases du développement de logiciels. Ces
erreurs sont dues principalement aux :

- Les personnes qui rédigent les cahiers des charges sont tres rarement les personnes qui
développent les systemes logiciels,

- Le cahier des charges est trés souvent écrit en langage naturel; source d'ambiguité,
d'imprécision ou d'incohérence,

- La complexité des applications que les machines actuelles permettent de réaliser.

Dong, il est crucial de permettre la détection (vérification) et la correction de ces erreurs
(maintenance curative) bien avant la livraison ou I'exploitation du produit logiciel. Le role de la
vérification se limite alors a la détection des erreurs susceptibles d'étre présentes dans le systeme.
Elle ne propose, par contre, aucune solution vis-a-vis aux problemes rencontrés.

La vérification vise principalement a s'assurer que le comportement du produit logiciel
(spécification ou exécutable) satisfait toutes les propriétés exigées dans le systéme.

Différentes techniques ont été proposées afin d'accomplir cette tache, dont les plus importantes
sont : le test, la démonstration et le model-checking.

5.2 Test

Le test est le processus manuel ou automatique qui vise a vérifier qu'un systeme respecte les
propriétés exigées par sa spécification ou a détecter des différences entres les résultats attendus
et ceux générés par le systeme.

Types de tests. Les tests peuvent étre statiques ou dynamiques. Les méthodes de test statique
consistent en |'analyse textuelle du code du logiciel (revue de code ou recherche d’anomalies) afin
de détecter des erreurs sans avoir a exécuter le programme. Les techniques de spécification
utilisées dans ce type de test peuvent varier des graphes de controle, les diagrammes de flots de
données, les systemes de transitions, etc.

Pour les techniques de test dynamique, I'exécution du programme est nécessaire pour déceler les
différentes fautes. La démarche repose sur la sélection et |'exécution d’un jeu de tests et la
comparaison des résultats obtenus avec ceux prévus ce qui permet de décider le succes ou I'échec
du test.

5.2.1 Construction des jeux de tests
Trois différentes approches sont distinguées pour : structurelle, fonctionnelle et aléatoire.

- Approche structurelle (boite blanche), consiste a une sélection de jeu de tests sur la base
de la structure du code source de I'implémentation. Cette sélection est souvent fondée sur

33

GL.5 / Vérification de logiciels 2012-2013

la notion de critere de couverture qui définit la facon dont les constructions de base du
code sont testées.

Approche fonctionnelle (boite noire), repose sur la sélection du jeu de test a partir de la
spécification des fonctionnalités du logiciel. La sélection dans ce cas dépend du degré de
formalité de la spécification.

Approche aléatoire, caractérisée par une sélection au hasard des jeux de test sur le
domaine des entrées du programme. Le domaine de définition des entrées du programme
est déterminé a I'aide des interfaces de la spécification ou du programme. Cette méthode
ne garantit pas une bonne couverture de I'ensemble des entrées du programme. En
particulier, elle peut ne pas prendre en compte certains cas limites ou exceptionnels. Cette
méthode a donc une efficacité trés variable.

5.2.1.1 Approche structurelle (boite blanche)

Ce test consiste a analyser la structure interne du programme en déterminant les chemins

minimaux. Afin d'assurer que:

Toutes les conditions d'arrét de boucle ont été vérifiées.
Toutes les branches d'une instruction conditionnelle ont été testées.

Les structures de données internes ont été testées (pour assurer la validité).

Structures de la représentation de la boite blanche. La structure de controle se présente sous la

forme d'un graphe de flots. On représente les instructions comme suit :

de SSP if then

(1 oun) E O if then

O‘ else

Affectation, & ({O
E/S. appel :

Remarque: If A&B&C < If Athen if B then if C then...

Mesure de complexité Cyclomatique. Cette mesure donne le nombre de chemins minimaux. Elle

est donnée par la formule suivante qui correspond au nombre de régions du graphe de flot :

Nbre Arcs — Nbre Noeuds + 2 = Nombre de cycles

Exemple : Supposons le programme représenté par |I'organigramme suivant:

34

GL.5 / Vérification de logiciels 2012-2013

read :read

while

begin
read(x) : read(y) :
while (not (x=y)) loop
if x>y then
X=X-Y;
else
y=y-X;
end if :
end loop :
pged =x:
end : —/
Donc le nombre de cycles est : Nbre Arcs - Nbre Noeuds +2=11-10+2=3

Pour vérifier, on regarde les chemins minimaux (un test par chemin pour tester toutes les
possibilités du programme). Dans I’exemple, les trois chemins sont :

1. 1.2.9.10
2. 1.2.3.4.5.8.2.9.10
3. 1.2.3.6.7.8.2.9.10

5.2.1.2 Approche fonctionnelle (boite noire)

On considere seulement la spécification de ce que doit faire le programme, sans tenir compte de
sa structure interne. On peut donc vérifier chaque fonctionnalité décrite dans la spécification (On
s’appuie principalement sur les données et les résultats). Le danger est I'explosion combinatoire
gu’entraine un grand nombre d’entrées du programme. Par contre, on peut écrire ces tests tres
tot, des qu'on connait la spécification.

Principe :

1. On considére le programme dans son aspect fonctionnel et non plus structurel.

2. On partitionne le domaine (DE) en classes.

3. On génere des cas de test aux limites des classes.

Exemple : Soit P un programme. Supposons que les données de P soient des nombres de cing

chiffres. Alors les classes de nombre a cing chiffres s'obtiennent de la maniére suivante:

35

GL.5 / Vérification de logiciels 2012-2013

1. x <10 000
2. 10000 < x <99 999
3. x =100 000

Les cas de test aux limites de ces classes sont donc 00 000 et 09 999 pour la premiére classe, 10
000 et 99 999 pour la deuxieme classe et 100 000 pour la troisieme.

5.2.2 Types de tests

a) les test unitaires de programmes ou de modules Dans ce qui précéde nous avons fait
I’hypothese du test d’'un programme isolé. Le test d’'un module ressemble au test d’'un programme
isolé si ce n"est que le module ne fonctionne pas seul mais utilise d’autres modules et est appelé
par d’autres modules. Pour tester un module, il faut simuler le comportement des modules
appelés (relation 'utilise') et simuler les appels du module.

b) Les tests d’intégration Apreés avoir testé unitairement les modules il faut tester leur intégration
progressive jusqu’a obtenir le systeme complet.

Test alpha : I'application est mise dans des conditions réelles d’utilisation, au sein de I'équipe de
développement (simulation de l'utilisateur final).

c) Les test de réception Test, généralement effectué par l'acquéreur dans ses locaux apres
installation d'un systéme, avec la participation du fournisseur, pour vérifier que les dispositions
contractuelles sont bien respectées.

Test béta : distribution du produit sur un groupe de clients avant la version définitive.

d) Les tests de non régression A la suite de la modification d'un logiciel (ou d'un de ses
constituants), un test de non régression a pour but de montrer que les autres parties du logiciel
n'ont pas été affectées par cette modification.

5.2.3 Test de spécification.

Dans le test fonctionnel, I'extraction des séquences de test a partir des spécifications permet en
particulier de découvrir des lacunes et des ambiguités de spécifications d’'une maniére
indépendante de n‘importe quelle exécution particuliere de ces spécifications. Le but immédiat
inclut un appui pour I'automatisation des transformations des spécifications fonctionnelles en une
suite de tests.

Le test de spécification apporte I'information utilisée comme entrée de test et les résultats prévus

a partir de la spécification du systeme sous test. Cette spécification représente une description
précise du comportement du systéme, mais qui n’integre pas les détailles d’'implémentation. Les
spécifications de type machines d'états sont tres utilisées pour la représentation de la dynamique
du systéeme en termes d’états et de transitions.

36

GL.5 / Vérification de logiciels 2012-2013

Les spécifications formelles sont trés adaptées pour ce type de test et peuvent servir dans une
procédure de test totalement mécanisée (utilisation de model-checkers par exemple). Mais ces
spécifications sont tres complexes et nécessitent une expertise spécialisée souvent rare. Les
spécifications semi formelles sont beaucoup plus simples a utiliser mais nécessitent une prise en
charge particuliere afin de bien préciser leur sémantique. La technique de spécification semi
formelle la plus utilisée est certainement le langage de modélisation unifié UML. Les diagrammes
état-transition d’'UML (appelés également machines d'états ou statecharts) représentent un outil
éprouvé de modélisation du comportement basé sur les machines d’états finis. Donc, leur
utilisation semble inéluctable dans le contexte de génération de test a partir d’'une spécification
UML. Cependant, leur utilisation nécessite d'abord une étape de formalisation permettant de
préciser leur sémantique.

5.3 Vérification formelle
5.3.1 Démonstration ou preuve de théorémes

La démonstration permet a partir d'un systeme et d'une propriété (les deux spécifiés
formellement par le méme langage), de prouver que le systéme vérifie ou non la propriété. Ceci
est réalisé en utilisant des regles de déduction, comme on pourrait le faire pour démontrer un
théoréme mathématique. Un outil permettant de faire une telle preuve pour chaque systeme et
chaque propriété est bien entendu impossible a implémenter. Cependant, des assistants a la
preuve (comme PVS par exemple) permettent d'accomplir certaines classes de preuve tout en
maintenant l'intervention de I'opérateur humain. L'assistant de preuve fournit alors un certain
nombre de lemmes intermédiaires qui permettront de prouver le théoreme et donc d'affirmer que
le modeéle du systéme satisfait la propriété (exprimée par la formule du théoreme).

Cette technique traite avec des systémes complexes de taille considérable (espace d'états infinis).
Elle couvre également un trés grand nombre de propriétés. En grande partie, parce qu'elle fait
constamment appel a I'opérateur humain pour palier les lacunes de ses stratégies de preuves
automatiques. Cependant, la technique présente deux principaux inconvénients majeurs qui
possedent la méme cause : I'indécidabilité. Le premier est I'absence de garantie sur le résultat ; le
théoréme que l'on vent démontrer peut s'avérer indécidable. Le deuxieme probléeme est que
I'assistant de preuve nécessitera toujours l'intervention humaine.

5.3.2 Model-checking

La vérification de modeles peut prendre deux formes : partielle appelée simulation ou compléte
appelée Model-checking.

La simulation est une technique de vérification semi-formelle utilisée pour vérifier les systemes
matériels ou logiciels pour détecter les erreurs de comportement assez tot pendant la phase de
conception. Le probléme posé par cette technique est qu'elle ne permet pas de couvrir toutes les
possibilités d'exécution du systéme en cours de vérification. Cette déficience est traitée par les

37

GL.5 / Vérification de logiciels 2012-2013

techniques de vérification formelle de modeles appelées Model-checking ou exploration de
I'espace d'états du systeme.

La model-checking est une procédure automatique permettant de vérifier qu'un modele d'un
systeme donné satisfait ou non une spécification particuliere. Cette procédure ne se fait pas par
déductions comme dans le cas des assistants de preuve, mais grace a des algorithmes tirant profit
des spécifications utilisées pour décrire le systéme et ses propriétés.

Le model-checking repose sur la modélisation formelle du systeme généralement par des
machines d'états finis (automates, structures de kripke, etc.) et la spécification des propriétés a
vérifier par des formules logiques (logique classique, logique temporelle, etc.). L'algorithme de
vérification combine le modeéle et la formule pour calculer I'ensemble des états accessibles qui
vérifient cette formule ; La propriété est vérifiée s'il y a au moins chemin qui relie I'état initial a
I'ensemble des états qui vérifient cette propriété.

Le model-checking est une procédure complétement automatisée et rapide, et peut étre utilisé
méme pour vérifier des spécifications partielles. Il produit également des contre-exemples
représentant généralement des erreurs subtiles de conception. Son inconvénient majeur est le
probléeme d'explosion combinatoire causé par une complexité accrue des systémes développés et
confrontée a des limites sérieuses de ressources matérielles. Ce probleme peut étre partiellement
surmonté par |'utilisation des techniques du model-checking symbolique (des représentations plus
abstraites des éléments constituant le systeme a vérifier). L'implémentation du model-checking
symbolique peut étre réalisée par utilisation des BDD (Binary Decision Diagram) par exemple.

A I'heure actuelle, on utilise la preuve assistée conjointement avec le model-checking par le biais
d'abstractions finies du systeme réalisées de fagon automatique afin de réduire la complexité du
systeme et de rester dans le cadre d'une théorie décidable. En pratique, ces techniques formelles,
plutdt d'origines académiques commencent a ce développer dans les entreprises et des outils
basés sur ces techniques ont déja fait leurs preuves sur des exemples industriels concrets. Des
exemples comme PVS, Coq, etc. (s de preuve), Spin, Java Pathfinder, Kronos, Uppaal, etc. (model-
checkers).

Ces méthodes n'ont pas la prétention de pouvoir certifier le comportement exact de n'importe
qguel systeme. En fait, elles s'appliquent a des modeles et non pas a des systemes réel. Des
modeles qui ne permettent pas toujours de représenter tout ce qui peut se passer dans la réalité ;
les systemes réel sont influencés par un environnement non contré6lé, alors que les modeles de ces
systéemes ne peuvent refléter qu'une partie minime du comportement de cet environnement. Le
test classique vient toujours en complément de ce genre de méthodes : il permet de mettre en
condition réelles les systemes, ce que ne permettent pas les model-checkers et pas toujours les
assistants de preuve.

38

GL.5 / Vérification de logiciels 2012-2013

5.4 Techniques de spécification formelle

Principalement, deux classes de techniques de spécification sont considérées : techniques
formelles et semi formelles (les spécifications informelles sont omises volontairement). Les
techniques semi formelles offrent des spécifications conviviales concédant des représentations
graphiques simples des systemes a développer. Cependant, I'utilisation de certains concepts
informels rend la spécification obtenue imprécise ce qui peut tromper les procédures de
vérification.

Les techniques formelles se basent, par contre, sur des fondements mathématiques et disposent
d'une axiomatique permettant une spécification précise et donc des opérations de vérification
patentes. Plusieurs techniques de spécification ont été suggérées dans la littérature ; certaines se
basent sur la théorie des ensembles (Z, VDM, ...), d'autres sur les logiques temporelles (LTL, CTL,
TCTL ...), etc. Plusieurs entre elles ont prouvé une efficacité dans le milieu industriel.

39

GL.A / Processus Unifié 2012/2013

A.1 Introduction
Rappel des objectifs des processus.

Un processus définit QUI fait QUOI, QUAND et COMMENT pour atteindre un certain objectif. Les
principaux objectifs peuvent étre :

- Construction des modeéles d’un ou plusieurs systéemes,

- Organisation et gestion de |a totalité du cycle de vie du projet,

- Gestion des risques,

- construction répétitive de produits logiciels de qualité constante.

A.2 Principes du processus unifié

Comme |'expérience I'a démontré avec I'histoire d'unification des méthodes obijet, il est clair qu'il
n'y a pas un seul processus de développement standard et utilisable sur toutes les classes de
systéemes et par tous les développeurs de systéemes logiciels. Cependant, des caractéristiques
communes et essentielles peuvent étre mises en avant.

Un processus d'ingénierie logicielle doit étre :

- Piloté par les cas d’utilisation,
- Centré sur I'architecture,

- Itératif et incrémental,

- Guidé par les Design Patterns.

Cas . | Conseils
u:l 'utlllsnhm Architecture l = Patterns =

S - | -
" prl’nﬁ: Fur W ¥ CENTNE SUPS "y guidé pars

—

Langage |¥ basé sur » | Ff'ucn..s - SO S
LML Lnif IE- # 52 dérpule » | incrémental

N

Processus A Processus B

Ces caractéristiques sont génériques ; le processus unifié¢ ne peut étre utilisé directement et
nécessite une spécialisation qui tient compte des facteurs organisationnels et techniques du
domaine.

1. Piloté par les cas d'utilisation
A partir des cas d'utilisation, il est possible de créer toute une série de modéles UML :

- Les modeles d'analyse spécifient les cas d'utilisation,
- Les modeles de conception réalisent les cas d'utilisation,

40

GL.A / Processus Unifié 2012/2013

- Les modeles de déploiement distribuent les cas d'utilisation,
- Les modeéles d'implémentation implantent les cas d'utilisation,
- Les modeles de tests vérifient les cas d'utilisation.

2. Centré sur l'architecture

L'architecture regroupe les différentes vues du systeme qui doit étre construit. Elle doit prévoir la
réalisation de tous les cas d’utilisation. L’architecture et les cas d’utilisation évoluent de facon
concomitante.

- Recherche de la forme générale du systéme dés le début,
- Approche systématique pour trouver une bonne architecture qui soit :
0 support des cas d’utilisation,
0 adaptable aux changements,
0 pour et avec la réutilisation,
0 compréhensible intuitivement.

3. Itératif et incrémental
Découpage du projet en ‘mini-projets' : des ITERATIONS qui donnent lieu a un INCREMENT.

- Chaque itération traite un certain nombre de cas d’utilisation en donnant priorité aux
risques majeurs.

- Une itération reprend les livrables dans I’état ou les a laissé l'itération précédente et les
enrichit progressivement (incrémental).

- Les itérations sont regroupées dans une phase. Chaque phase est ponctuée par un repere
gui marquera la décision que les objectifs (fixés préalablement) ont été remplis.

- Les premieres itérations sont des prototypes qui définissent le noyau de I'architecture.

Les phases. Le processus unifié comme le montre la figure suivante propose quatre phases sur une
échelle temporelle : Pré-étude (/nception), Elaboration, Construction et Transition.

-
Architecture Premiéres Livraison
fanctionnalités Produit

a. Pré-étude:

- Délimiter la portée du systeme,

- Définir les frontieres et identifier les interfaces,
- Développer les cas d’utilisation,

- Décrire et esquisser I'architecture candidate,

41

GL.A / Processus Unifié 2012/2013

Identifier les risques les plus sérieux,
Démontrer que le systeme proposé est en mesure de résoudre les problemes ou de
prendre en charge les objectifs fixés.

Le résultat =» Vision : Glossaire, Détermination des parties prenantes et des utilisateurs,
Détermination de leurs Besoins fonctionnels et non fonctionnels, Contraintes de conception.

b.

Elaboration :

Spécifier des fondements de I'architecture et créer une architecture de référence,
Identifier les risques qui peuvent bouleverser le plan, le co(t et le calendrier,

Définir les niveaux de qualité a atteindre,

Formuler les cas d’utilisation pour couvrir environ 80% des besoins fonctionnels et de
planifier la phase de construction,

Planifier le projet, élaborer une offre abordant les questions de calendrier, de personnel et
de budget.

Le résultat = Architecture : Document d’architecture Logicielle, différentes vues selon la partie
prenante, une architecture candidate, comportement et conception des composants du systeme.

Construction :

Etendre I'identification, la description et la réalisation des cas d’utilisation,

Finaliser I'analyse, la conception, I'implémentation et les tests,

Préserver l'intégrité de I'architecture,

Surveiller les risques critiques et significatifs identifiés dans les deux premieres phases et
réduire les risques.

Le résultat = Produit. Premiéres fonctionnalités.

Transition :

Préparer les activités,

Recommandations au client sur la mise a jour de I'environnement logiciel,
Elaborer les manuels et la documentation concernant la version du produit,
Adaptation du logiciel,

Correction des anomalies liées au béta test,

Dernieres corrections.

Le résultat =» Livraison du produit aux utilisateurs.

Les Activités.

Modélisation métier :

Compréhension de la structure et la dynamique de I'organisation,
Comprendre les probléemes posés dans le contexte de |’organisation,
Conception d’un glossaire.

42

GL.A / Processus Unifié 2012/2013

2. Recueil et expression des besoins :

- Aupres des clients et parties prenantes du projet,

- Ce que le systeme doit faire,

- Expression des besoins dans les cas d’utilisation,

- Spécifications des cas d’utilisation en scénarios,

- Spécifications fonctionnelles et non fonctionnelles,
- Planification et prévision de co(t,

- Production de Maquettes de I'lHM :

0 La production de maquettes peut étre réalisée avec n'importe quel outil graphique :
= ce sont de simples dessins d’écrans et descriptions de contenu de fenétres,
= prototype d’interface généré par un outil,
= |ntéressant pour décrire les interfaces avec des acteurs non humains.

0 Pourquoi si tét dans le processus ?
= Aide ala description et validation des cas d’utilisation,
= moyen de communication avec le client,
= permet l'identification de classes,

3. Analyse et conception :
- Transformation des besoins utilisateurs en modeles UML,
- Modele d’analyse et modele de conception.

4. Implémentation :

- Développement itératif,

- Découpage en couches,

- Composants d’architecture,

- Retouche des modeles et des besoins,

5. Test, Déploiement, Configuration et gestion des changements, Gestion du projet et de
I'environnement.

Les Itérations.

Une itération est une séquence d’activités selon un plan préétabli et des criteres d’évaluation,
résultant en un produit exécutable.

| |
| I |
I Cons | Cons I
| Harztion | lteration |

A A A A A A A A

Relemse Release Release Relkase Relase Rebase Rdeass Relessa

43

GL.A / Processus Unifié 2012/2013

4. Guidé par les Design patterns
La notion de pattern désigne une solution générique d'un probleme récurrent.

- Les bonnes pratiques et solutions.
- La plupart des patterns visent la réutilisabilité et I'extensibilité
- Un moyen de transférer des compétences.

Nom du Pattern
Probléeme
(probléme récurrent de conception 00)

Solution (exprimée en UML)

Bénéfices

Fig. A.1 structure template du pattern.

La figure suivante montre I'exemple du design pattern ‘composite’ qui est un pattern de structure
(chapitre suivant) permettant d'établir des structures arborescentes entre des objets et les traiter
uniformément.

Nom du Pattern Composite Pattern
Probléme (probléme récurrent de conception 00) Représenter des objets complexes
S
Elerment
Solution (exprimée en UML) /fi D\
Objet- Objet-
complexe simple
- Construction récursive de hiérarchies
Bénéfices - Considérer de maniére homogene les
nceuds simples et complexes

Fig. A.2 exemple du pattern composite.

44

GL.B / Design Patterns 2012-2013

B.1 Définition des patterns

Le terme pattern a été initialement introduit dans le domaine d'architecture par C. Alexander qui a
défini 253 patrons de conception architecturaux (64, 77, 79).

Un patron (selon C. Alexander) décrit a la fois un probléme qui se produit tres fréguemment dans
votre environnement et I'architecture de la solution a ce probleme de telle fagcon qu'on puisse
utiliser cette solution plusieurs fois sans avoir a I'adapter de la méme maniere.

=>»Décrire avec succes des types de solutions récurrentes a des problemes communs dans des
types de situations.

B.2 Classification des patterns

Les patterns utilisés dans l'ingénierie logicielle peuvent étre identifiés dans différents domaines et
a différents niveaux :

Patterns Architecturaux. Schémas d’organisation structurelle de logiciels (pipes, filters, ...)

Design Patterns. Caractéristiques clés d’une structure de conception commune a plusieurs
applications, de portée plus limitée que les patterns architecturaux. Selon leurs portées (classe ou
objet), les design patterns peuvent étre réutilisés par héritage (classe) ou par composition (objet).

Anti-patterns. Mauvaise solution ou comment sortir d’'une mauvaise solution.

Coding patterns. Solution liée a un langage particulier.

Analysis Patterns. Schémas d'analyse (vérification) de conception.

Specification Patterns. Schémas de spécification de propriétés a vérifier par model-checking.

Patterns Organisationnel. Organisation de tout ce qui entoure le développement d’un logiciel
(humains)...

B.3 Objectifs des design patterns
Les design patterns présentent de nombreux avantages, dont les plus importants sont :

- Documentation d’une expérience éprouvée de conception,

- Identification et spécification d’abstractions de haut niveau,

- Vocabulaire commun et aide a la compréhension de principes de conception,

- Moyen de documentation de logiciels,

- Aide a la construction de logiciels a caractéristiques précises, de logiciels complexes et
hétérogenes,

- produit logiciel plus simple a modifier et moins fragiles.

13

GL.B / Design Patterns 2012-2013

B.4 Classification des design patterns

I'ouvrage des GoF (gang of four : ses quatre auteurs) Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley Publishing Company, 1994. A défini la premiére

classification de design patterns. Initialement, 23 patterns ont été répartis dans trois catégories :
— Creational patterns : processus de création d'objet,
— Structural patterns, composition et structure statiques des classes et des objets,

— Behavioral patterns, interactions dynamiques entre classes e objets.

Creational Patterns Behavioral Patterns
Abstract Factory Chain of Responsibility
Builder Command

Factory Method Interpreter
Prototype Iterator

Singleton Mediator
Structural Patterns Memento

Adapter Observer

Bridge State

Composite Strategy

Decorator Template Method
Facade Visitor

Flyweight

Proxy

Plusieurs autres patterns ont été ensuite proposes par d'autres auteurs.

— L'ouvrage '‘Data Access Patterns' de Clifton Nock a introduit 4 decoupling patterns, 5
resource patterns, 5 1/0 patterns, 7 cache patterns, et 4 concurrency patterns.

— Autres langages de patterns incluent telecommunications patterns, pedagogical
patterns, analysis patterns, etc.

14

GL.B / Design Patterns 2012-2013

B.4.1 Design Patterns de création

1. Abstract Factory : interface pour la création de familles d’objets sans spécifier les classes
concretes.

2. Builder : séparation de la construction d’objets complexes de leur représentation afin
gu’un méme processus de construction puisse créer différentes représentations.

3. Factory Method : définition d’une interface pour la création d’objets associés dans une
classe dérivée.
Prototype : spécification des types d’objet a créer en utilisant une instance prototype.

5. Singleton : comment assurer l'unicité de I'instance d’une classe.

// Oaly one object of this class can be created
class Singleton
{
private static Singleton _instance = null;
private Singleton() { fill in the blank }
public static Singleton getlnstance()
{
if (_instance =mull) _instance = new Singleton():
refurn _instance;
1
public void otherOperations() { blanlk:; }
}
class Program
{
public void aMethod()
{
X = Singleton getnstance();
}
}

B.4.2 Design Patterns de structure

6. Adapter : traducteur adaptant l'interface d’une classe en une autre interface convenant
aux attentes des classes clientes.

7. Bridge : découplage de l'abstraction de |'implémentation pour faire varier les deux
indépendamment.

8. Composite : structure pour la construction d’agrégations récursives.

*

AbstractComponent 0.1
Concrete(omponent] ConcrereComponent2 AbstractCompasite
+operati +operation() +add(In p:AbstractComponant)
+remove(ln p:AbstractComponent)
+getChuld(In rmteger)
|+-operation(}

46

GL.B / Design Patterns

2012-2013

9. Decorator : extension d’un objet de maniére transparente.
10. Facade : unification de plusieurs interfaces de sous-systemes.

11. Flyweight : partage efficace de plusieurs objets.
12. Proxy : approximation d’un objet par un autre.

B.4.3 Design Patterns de comportement

13. Chain of Responsibility : délégation des requétes a des responsables de services.

14. Command : encapsulation de requétes par des objets afin de permettre a un objet de
traiter plusieurs types de requétes.

CommandManager

manages

AbstractCommand

*

—

Invoker

creates-and-invokes

reator/invoker +invokee

+dolt()
+undoli()

”f

ConcreteCommand

+dolt()
+undolt()

15. Interpreter : étant donné un langage, représentation de la grammaire le définissant pour

I'interpréter.

16. Iterator : parcours séquentiel de collections.
17. Mediator : coordination d’interactions entre des objets associés.
18. Memento : capture et restauration d’états d’objets.

19. Observer : mise a jour automatique des dépendants d’un objet.

mteface ==
ObzerverIF

Registers-to-receive-notificarions

notify(}

Obzerver

47

==interfapa-

OhzervableIF

Register-observers |
{

0.1

| [removeObserver()

addObzerver()

!
ol
f

Obzervable

il 1 II
Narifies
1l 1)

W v

Multicaster

removeChserver()
addObzerver{)

GL.B / Design Patterns 2012-2013

20. State : permettre a un objet de modifier son comportement lorsque son état interne
change.

21. Strategy : abstraction pour sélectionner un algorithme parmi plusieurs.

Uses AbstractStrategy
Client 5
l 0.1 +operation()
f‘\.
ConcreteStrategyl ConcreteStrategy2
operation() +operation()

22. Template method : définition d’'un squelette d’algorithme dont certaines étapes sont
fournies par une classe dérivée.

23. Visitor : représentation d’opérations devant étre appliquées a des éléments d’une
structure hétérogene d’objets.

B.5 Style de description de Patterns

Différentes structures templates peuvent étre utilisées pour la description des patterns. La
structure que nous présentons semble satisfaisante :

Pattern name

Recurring problem
Description du probleme que traite le pattern

Solution
Approche générale du pattern

UML model
Spécification UML de la solution

Use Example(s)
Exemples du pattern dans un langage de programmation

48

	GL-1.Intro.pdf
	GL-2.CyclesVie.pdf
	GL-3.Méthodes.pdf
	GL-4.ConceptsObjet.pdf
	GL-5.Test.pdf
	GL-A.UnifiedProcess.pdf
	GL-B.DesignPatterns.pdf

